6D Object Pose Estimation with Depth Images: A Seamless Approach for Robotic Interaction and Augmented Reality
نویسندگان
چکیده
To determine the 3D orientation and 3D location of objects in the surroundings of a camera mounted on a robot or mobile device, we developed two powerful algorithms in object detection and temporal tracking that are combined seamlessly for robotic perception and interaction as well as Augmented Reality (AR). A separate evaluation of, respectively, the object detection and the temporal tracker demonstrates the important stride in research as well as the impact on industrial robotic applications and AR. When evaluated on a standard dataset, the detector produced the highest f1score with a large margin while the tracker generated the best accuracy at a very low latency of approximately 2 ms per frame with one CPU core – both algorithms outperforming the state of the art. When combined, we achieve a powerful framework that is robust to handle multiple instances of the same object under occlusion and clutter while attaining real-time performance. Aiming at stepping beyond the simple scenarios used by current systems, often constrained by having a single object in absence of clutter, averting to touch the object to prevent close-range partial occlusion, selecting brightly colored objects to easily segment them individually or assuming that the object has simple geometric structure, we demonstrate the capacity to handle challenging cases under clutter, partial occlusion and varying lighting conditions with objects of different shapes and sizes.
منابع مشابه
Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4...
متن کامل6D Object Detection and Next-Best-View Prediction in the Crowd
6D object detection and pose estimation in the crowd (scenes with multiple object instances, severe foreground occlusions and background distractors), has become an important problem in many rapidly evolving technological areas such as robotics and augmented reality. Single shotbased 6D pose estimators with manually designed features are still unable to tackle the above challenges, motivating t...
متن کاملDeep-6DPose: Recovering 6D Object Pose from a Single RGB Image
Detecting objects and their 6D poses from only RGB images is an important task for many robotic applications. While deep learning methods have made significant progress in visual object detection and segmentation, the object pose estimation task is still challenging. In this paper, we introduce an end-toend deep learning framework, named Deep-6DPose, that jointly detects, segments, and most imp...
متن کاملRecovering 6D Object Pose: Multi-modal Analyses on Challenges
A large number of studies analyse object detection and pose estimation at visual level in 2D, discussing the effects of challenges such as occlusion, clutter, texture, etc., on the performances of the methods, which work in the context of RGB modality. Interpreting the depth data, the study in this paper presents thorough multi-modal analyses. It discusses the above-mentioned challenges for ful...
متن کاملDeepIM: Deep Iterative Matching for 6D Pose Estimation
Estimating the 6D pose of objects from images is an important problem in various applications such as robot manipulation and virtual reality. While direct regression of images to object poses has limited accuracy, matching rendered images of an object against the input image can produce accurate results. In this work, we propose a novel deep neural network for 6D pose matching named DeepIM. Giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1709.01459 شماره
صفحات -
تاریخ انتشار 2017